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b Applied Chemistry Department, József Attila University, Rerrich B. tér 1, H-6720 Szeged, Hungary

Received 13 July 1998

Based on quantum chemical calculation results, four rules were previously derived for the
numbers and the sequences of the conformers of free n-alkane molecules. This paper builds
up first an algebra to handle the conformational problem of n-alkanes. Partitioning the set
of all sequences, the whole problem is then subdivided into three independent subcases.
With the help of an equivalence relation, the sequences can be classified. According to the
quantum chemical rules, certain equivalence classes do not represent conformers. A well-
defined subcase of the whole problem is solved.

1. Introduction

A large number of papers have dealt with the conformational behaviour of n-
alkanes. As regards the applied experimental techniques, microwave [13], infrared
[12] and electron diffraction [2,7] investigations should be mentioned. For theoretical
studies, algebraic and combinatoric [1,3–6,9,21], molecular mechanics [10,11] and
quantum chemical [8,14–20,22] methods have been used.

In the algebraic and combinatoric studies, it is generally assumed that any isomer
of n-alkanes can be embedded into the crystal lattice of diamond [1,3–6,9,21]. The
embedded isomers (alkane systems, alkanoids), therefore, cannot have different C–C–
C–C torsional angles from those occurring in the diamond lattice.

In several recent papers we analysed the conformational properties of n-alkanes
by quantum chemical methods at various levels of theory [15–19]. With the help of
an effective one-electron method (SEOEM) [16], all the existing conformers in the
conformational space were determined up to undecane [19]. For the butane, pentane,
hexane, heptane and octane molecules, calculations were also performed at Hartree–
Fock (HF/6-31G∗) and second-order Moeller–Plesset (MP2/6-311G∗∗) levels [17,19].
Based on the results obtained for butane, pentane, hexane and heptane, four rules
were derived, which exactly reproduced the quantum chemical calculations up to un-
decane [19]. The rules show that the most important factors governing the conforma-
tional behaviour of n-alkanes are the non-bonded repulsive–attractive (van der Waals)
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interactions between the hydrogen atoms attached to the carbon atoms at positions 1,4,
1,5, 1,6 and 1,7.

A FORTRAN program (ENUMERAT) was written to determine the number and
the sequences of the existing conformers of any n-alkane molecule [19]. With the help
of similarity calculations, the structurally unique (non-isomorphic) conformers can be
identified. The program generates first a list of 5n items representing the available
sequences. To obtain the number and the sequences of the existing conformers, the
forbidden ones should then be eliminated according to the quantum chemical rules.
This procedure, however, is neither neat nor fast enough.

The question now arises of whether it is possible to derive a simple explicit
formula for the numbers of the conformers with algebraic and combinatoric tools. The
present paper analyses this problem and affords a solution for a well-defined subcase
of the whole problem. In the discussion to follow, methane, ethane and propane are
excluded from the set of n-alkanes, because they have no free C–C–C–C torsional
angle.

2. Rules determining the sequences of the conformers

According to the quantum chemical calculations, there are two kinds of gauche
C–C–C–C torsional angle in the isolated n-alkane molecules: one is around ±60◦ and
the other around ±95◦ [19]. Let us introduce the following symbols for the various
torsional angles: t, ∼180◦; g+, ∼+ 60◦; g−, ∼−60◦; x+, ∼+ 95◦; and x−, ∼−95◦.
Since the diamond lattice contains t, g+ and g− torsional angles, the alkanoids can be
used for modelling only a subset of the existing conformers.

From the quantum chemical calculation results, the following rules can be de-
duced for the sequences of the conformers [19]:

(1a) the double sequences g+g− and g−g+ as well as

(1b) x+x− and x−x+ cannot occur,

(2) the triple sequences g+x−g+, g−x+g−, x+g+x−, x−g+x+, x+g−x− and
x−g−x+ are likewise not allowed,

(3) the quadruple sequences x+g−g−x+ and x−g+g+x− are also forbidden and,
finally,

(4) g− should exist beside x+ and, similarly, g+ beside x−: . . . x+g− . . . or
. . . g−x+ . . . and . . . x−g+ . . . or . . . g+x− . . . .

It is noteworthy that Bartell and coworkers recognised the validity of rule (1a)
without performing any quantum chemical calculation [2,7]. They studied the con-
formational behaviour of butane, pentane, hexane, heptane and hexadecane in the
gas phase by the electron diffraction method. To simulate the experimental data, t,
g+ and g− C–C–C–C torsional angles were considered for the conformers and the se-
quences according to rule (1a) were omitted. For butane, pentane, hexane and heptane,
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3, 7, 17 and 41 conformers were therefore considered, respectively [2]. A comparison
of the experimental and simulation results led to the conclusion that further conformers
might exist in traces in the gas phase. According to the quantum chemical studies,
those conformers contain extended torsional angles x+ and x−.

3. Construction of an algebra for conformational studies of n-alkanes

Let us construct a set from the possible C–C–C–C torsional angles:

A =
{
t, g+, g−,x+,x−

}
. (1)

The sequences of the conformers of n-alkanes can be regarded as elements of the
various Cartesian powers of set A. Let B denote the nth Cartesian power of A:

B = An =
{

(a1, a2, . . . , an) | ai ∈ A, 1 6 i 6 n
}
. (2)

The order of B, i.e., the number of elements in set B is

|B| = |A|n = 5n. (3)

For a particular n-alkane, n is the number of free C–C–C–C torsional angles in the
molecule.

We can subdivide the conformational problem into different subcases making the
following proper subsets of A:

A1 =
{
t, g+, g−

}
, A2 =

{
t,x+,x−

}
. (4)

Let us make the nth Cartesian powers B1 and B2 of sets A1 and A2, respectively:

B1 = An1 =
{

(a1, a2, . . . , an) | ai ∈ A1, 1 6 i 6 n
}

,

|B1| = |A1|n = 3n,

(5)
B2 = An2 =

{
(a1, a2, . . . , an) | ai ∈ A2, 1 6 i 6 n

}
,

|B2| = |A2|n = 3n.

The intersection of sets B1 and B2 is just the “all-trans” element:

B1 ∩B2 = (t, t, . . . , t). (6)

Let B0 denote the set that consists of the “all-trans” element only. The sets B0, B1

and B2 are proper subsets of B. Let us make the following sets from them:

B′1 = B1−B0, B′2 = B2−B0, B3 = B−
(
B′1∪B′2

)
, B′3 = B3−B0. (7)

It can be seen that the sets B0, B′1, B′2 and B′3 are disjoint in pairs and their union
is the set B. With this partition of B, the conformational problem can be subdivided
into three subcases:
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(i) According to rules (1)–(4), the whole set B′2 can be discarded because its elements
do not represent existing conformers.

(ii) The set B′1 can be examined separately from the set B′3. To determine the elements
representing conformers in B′1, only rule (1a) should be considered.

(iii) The sequences corresponding to the elements of set B′3 contain at least one “x”
and one “g” element. In this case, all the rules should be applied to determine
the elements representing conformers.

Let us define two unary operations (φi,φm :B → B) on the set B:

ϕi
[
(a1, a2, . . . , an)

]
= (an, an−1, . . . , a1),

(8)
ϕm
[
(a1, a2, . . . , an)

]
= (−a1,−a2, . . . ,−an).

To assure the closure of B under φm, the following relations are to be required:

−t = t, −g+ = g−, −g− = g+, −x+ = x−, −x− = x+. (9)

From the definition of the operations φi and φm, it follows that

ϕi
[
ϕi(α)

]
=α,

ϕm
[
ϕm(α)

]
=α, (10)

ϕi
[
ϕm(α)

]
=ϕm

[
ϕi(α)

]
,

where α ∈ B. We can readily generate a matrix or a permutation representation for
this algebra; however, there is no need to use it in practice.

Let α and β be two elements of B and generate the following elements from
them:

αi = ϕi(α), βi = ϕi(β),
αm = ϕm(α), βm = ϕm(β),
αk = ϕm

[
ϕi(α)

]
, βk = ϕm

[
ϕi(β)

]
.

(11)

Let ρα and ρβ denote the following sets:

ρα = {α,αi,αm,αk}, ρβ = {β,βi,βm,βk}. (12)

It can easily be shown that the sets ρα and ρβ are the same or disjoint:

ρα = ρβ or ρα ∩ ρβ = ∅. (13)

Generating all the distinct ρs, a partition of B can be obtained. The sets ρ are therefore
equivalence classes of B. In fact, with the help of the two unary operations under
consideration an equivalence relation is defined on set B. In a similar manner, the sets
B′1, B′2 and B′3 can be partitioned. The set B′0 is an equivalence class of B itself:

ρ(t,t,...,t) =
{

(t, t, . . . , t)
}

= B0. (14)

The equivalence classes ρ contain one, two or four elements depending on the sym-
metry properties of the sequences:
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(i) |ρα| = 1 if α = αi = αm = αk. In this case, the sequence has C2v symmetry if
n is even or C2h if n is odd;

(ii) |ρα| = 2 if α = αi 6= αm or α 6= αi = αm. In the first case, the sequences have
C2 symmetry, while in the second one, Cs if n is even or Ci if n is odd;

(iii) |ρα| = 4 if α, αi, αm and αk are all distinct. In this case, the sequences have no
symmetry (C1).

The elements belonging to the same equivalence class represent structurally iden-
tical sequences. They are said to be isomorphic with each other. The number of
structurally unique sequences is therefore equal to the number of equivalence classes.
According to rules (1)–(4), certain equivalence classes of B do not represent conform-
ers. Eliminating all of them, one can obtain the structurally unique (non-isomorphic)
conformers of the molecule under consideration. In general, the non-isomorphic con-
formers are named spectral isomers in the literature because the isomorphic conformers
cannot be distinguished by spectroscopic methods. The equivalence classes with C1

and C2 symmetry consist of chiral sequences (conformers).

4. Conformers in the set B1

Let us determine first the equivalence classes of B1. For the number of equiva-
lence classes k in B1, the following decomposition is valid:

k = k1 + k2 + k4, (15)

where k1, k2 and k4 are the numbers of the equivalence classes with one, two and
four elements, respectively. According to the symmetry properties of the sequences,
the number k2 is a sum of two members:

k2 =

{
k2(C2) + k2(Cs) (n is even),
k2(C2) + k2(Ci) (n is odd),

(16)

where, for instance, k2(C2) is the number of equivalence classes with C2 symmetry.
With elementary combinatorical skills, the following equations can be derived for the
numbers of equivalence classes:

n is even : k2(C2) =
(
3n/2 − 1

)
/2,

k2(Cs) = k2(C2),

k2 = 3n/2 − 1, (17)

k4 =
1
4

(
1 + 3n − 2× 3n/2),

k=
1
4

(
1 + 3n + 2× 3n/2);
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n is odd : k2(C2) =
(
3(n+1)/2 − 1

)
/2,

k2(Ci) =
(
3(n−1)/2 − 1

)
/2,

k2 = 2× 3(n−1)/2 − 1, (18)

k4 =
1
4

(
1 + 3n − 4× 3(n−1)/2),

k=
1
4

(
1 + 3n + 4× 3(n−1)/2).

Table 1 presents data up to n = 20. The numbers in table 1 are well-known from
other combinatorical and graph theoretical studies [1,3–6,9,21].

Let us now consider rule (1a). To count the elements (sequences), which are
forbidden according to rule (1a), a special procedure is needed. Figure 1 presents
our counting procedure for the octane molecule (n = 5). It is to be seen that the
number of forbidden elements in set B1 is 144, therefore, the number of conform-
ers is 99. For butane, pentane, hexane and heptane, the numbers of conformers in
set B1 are 3, 7, 17 and 41, respectively. It is worthwhile to note that these num-
bers were also obtained by Bartell and Kohl [2]. By application of mathematical
induction, an equation can be deduced for the numbers of forbidden elements, Nf , in

Table 1
Equivalence classes of set B1.

n 3n k1 k2 k4 k

1 3 1 1 0 2
2 9 1 2 1 4
3 27 1 5 4 10
4 81 1 8 16 25
5 243 1 17 52 70
6 729 1 26 169 196
7 2187 1 53 520 574
8 6561 1 80 1600 1681
9 19683 1 161 4840 5002

10 59049 1 242 14641 14884
11 177147 1 485 44044 44530
12 531441 1 728 132496 133225
13 1594323 1 1457 397852 399310
14 4782969 1 2186 1194649 1196836
15 14348907 1 4373 3585040 3589414
16 43046721 1 6560 10758400 10764961
17 129140163 1 13121 32278480 32291602
18 387420489 1 19682 96845281 96864964
19 1162261467 1 39365 290545684 290585050
20 3486784401 1 59048 871666576 871725625
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Figure 1. Counting procedure to determine the forbidden sequences for octane (n = 5) in set B1 according
to rule (1a).
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set B1:

Nf =
2
3

n−1∑
i=1

ωi3
n−i, (19)

where ωs are integers and the following recurrence relation is valid for them:

ωi+2 = 2ωi+1 + ωi with ω1 = 1 and ω2 = 2. (20)

According to equation (19), the number of elements representing conformers in B1 is

Nc = 3n − 2
3

n−1∑
i=1

ωi3
n−i (21)

or, transforming the recurrence relation (20) of ωs into explicit formula,

Nc = 3n − 1
3

n−1∑
i=1

[
(1 +

√
2)i√

2
+

(1−
√

2)i+1

2−
√

2

]
3n−i. (22)

To determine the number of equivalence classes, which consist of elements representing
conformers in B1, the following expressions can be used:

n is even : k2(C2) =
1
2

(
3n/2 − 2

3

(n/2)−1∑
i=1

ωi3
(n/2)−i − 1

)
,

(23)

k2(Cs) =
1
2

(
3(n/2)−1 − 2

32

(n/2)−2∑
i=1

ωi3
(n/2)−i − 1

)
;

n is odd : k2(C2) =
1
2

(
3(n+1)/2 − 2

3

(n−1)/2∑
i=1

ωi3
(n+1)/2−i − 1

)
,

(24)

k2(Ci) =
1
2

(
3(n−1)/2 − 2

3

(n−3)/2∑
i=1

ωi3
(n−1)/2−i − 1

)
.

The number of equivalence classes with C1 symmetry is

k4 =
1
4

(Nc − 2k2 − 1). (25)

Table 2 presents data for the conformers in B1 up to n = 20. The last column of
table 2 gives the fractions r of the conformers in B1.

Bartell and Fitzwater studied the conformational behaviour of hexadecane (n =
13) by electron diffraction method [7]. They wrote in their paper: “. . . A molecule of
n-hexadecane has 1225 internuclear distances in a given conformation and can exist
in well over a million conformations . . .”. In fact, it can be seen from table 2 that the
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Table 2
Equivalence classes of the conformers in set B1.

n Nc k1 k2 k4 k r

1 3 1 1 0 2 1.0000
2 7 1 1 1 3 0.7778
3 17 1 4 2 7 0.6296
4 41 1 4 8 13 0.5062
5 99 1 11 19 31 0.4074
6 239 1 11 54 66 0.3278
7 577 1 28 130 159 0.2638
8 1393 1 28 334 363 0.2123
9 3363 1 69 806 876 0.1709

10 8119 1 69 1995 2065 0.1375
11 19601 1 168 4816 4985 0.1106
12 47321 1 168 11746 11915 0.0890
13 114243 1 407 28357 28765 0.0717
14 275807 1 407 68748 69156 0.0577
15 665857 1 984 165972 166957 0.0464
16 1607521 1 984 401388 402373 0.0373
17 3880899 1 2377 969036 971414 0.0301
18 9369319 1 2377 2341141 2343519 0.0242
19 22619537 1 5740 5652014 5657755 0.0195
20 54608393 1 5740 13649228 13654969 0.0157

number of conformers according to their model is much less than one million: “only”
114,243.
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